Finite group actions and nonseparating $2$-spheres
نویسندگان
چکیده
منابع مشابه
Nonseparating spheres and twistedHeegaard Floer homology
Heegaard Floer homology was introduced by Ozsváth and Szabó [16]. For nullhomologous knots, there is a filtered version of Heegaard Floer homology, called knot Floer homology; see Ozsváth and Szabó [14] and Rasmussen [18]. Basically, if one knows the information about the knot Floer homology of a knot, then one can compute the Heegaard Floer homology of any manifold obtained by Dehn surgery on ...
متن کاملGroup actions on homology spheres
This can be stated in a more symmetric manner. Let r be any positive integer not equal to 3. Then n acts freely and homologically trivially on Z r i ff n acts freely and homologically trivially on SL In fact, there is a one-to-one correspondence between such actions on U and such actions on S r. (The classification of such actions is discussed in w In addition the actions constructed have the p...
متن کاملPseudofree Group Actions on Spheres
R. S. Kulkarni showed that a finite group acting pseudofreely, but not freely, preserving orientation, on an even-dimensional sphere (or suitable sphere-like space) is either a periodic group acting semifreely with two fixed points, a dihedral group acting with three singular orbits, or one of the polyhedral groups, occurring only in dimension 2. It is shown here that the dihedral group does no...
متن کاملDifferentiable Actions on 2 « - Spheres
Introduction. It is shown in [4] that there is an infinite family of semifree Zm actions on odd dimensional homotopy spheres. There is also an infinite family of semifree S actions on odd dimensional homotopy spheres (see [2], [5]). On the other hand, it is announced in [2] that there are only finitely many inequivalent semifree S actions on even dimensional homotopy spheres. Hence it is intere...
متن کاملSome Cyclic Group Actions on Homotopy Spheres
In [4J Orlik defined a free cyclic group action on a homotopy sphere constructed as a Brieskorn manifold and proved the following theorem: THEOREM. Every odd-dimensional homotopy sphere that bounds a para-llelizable manifold admits a free Zp-action for each prime p. On the other hand, it was shown ([3J) that there exists a free Zp-action on a 2n-1 dimensional homotopy sphere so that its orbit s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1984
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1984-0728363-9